MicroRNA-mediated epigenetic silencing of sirtuin1 contributes to impaired angiogenic responses.

نویسندگان

  • Ingo Volkmann
  • Regalla Kumarswamy
  • Nils Pfaff
  • Jan Fiedler
  • Seema Dangwal
  • Angelika Holzmann
  • Sandor Batkai
  • Robert Geffers
  • Achim Lother
  • Lutz Hein
  • Thomas Thum
چکیده

RATIONALE Transforming growth factor (TGF)-β was linked to abnormal vessel function and can mediate impairment of endothelial angiogenic responses. Its effect on microRNAs and downstream targets in this context is not known. OBJECTIVE To study the role of microRNAs in TGF-β-mediated angiogenic activity. METHODS AND RESULTS MicroRNA profiling after TGF-β treatment of endothelial cells identified miR-30a-3p, along with other members of the miR-30 family, to be strongly silenced. Supplementation of miR-30a-3p restored function in TGF-β-treated endothelial cells. We identified the epigenetic factor methyl-CpG-binding protein 2 (MeCP2) to be a direct and functional target of miR-30a-3p. Viral overexpression of MeCP2 mimicked the effects of TGF-β, suggesting that derepression of MeCP2 after TGF-β treatment may be responsible for impaired angiogenic responses. Silencing of MeCP2 rescued detrimental TGF-β effects on endothelial cells. Microarray transcriptome analysis of MeCP2-overexpressing endothelial cells identified several deregulated genes important for endothelial cell function including sirtuin1 (Sirt1). In vivo experiments using endothelial cell-specific MeCP2 null or Sirt1 transgenic mice confirmed the involvement of MeCP2/Sirt1 in the regulation of angiogenic functions of endothelial cells. Additional experiments identified that MeCP2 inhibited endothelial angiogenic characteristics partly by epigenetic silencing of Sirt1. CONCLUSIONS TGF-β impairs endothelial angiogenic responses partly by downregulating miR-30a-3p and subsequent derepression of MeCP2-mediated epigenetic silencing of Sirt1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Interplay between microRNA-34a and Sirtuin1 in Hyperglycemia-Mediated Impaired Angiogenesis in Endothelial Cells: Effects of Metformin s

Impaired angiogenesis is a prominent risk factor that contributes to the development of diabetes-associated cardiovascular disease. MicroRNAs (miRNAs), small noncoding RNAs, are implicated as important regulators of vascular function, including endothelial cell differentiation, proliferation, and angiogenesis. In silico analysis and in vitro studies indicate that silent information regulator 1 ...

متن کامل

Molecular Interplay between microRNA-34a and Sirtuin1 in Hyperglycemia-Mediated Impaired Angiogenesis in Endothelial Cells: Effects of Metformin.

Impaired angiogenesis is a prominent risk factor that contributes to the development of diabetes-associated cardiovascular disease. MicroRNAs (miRNAs), small noncoding RNAs, are implicated as important regulators of vascular function, including endothelial cell differentiation, proliferation, and angiogenesis. In silico analysis and in vitro studies indicate that silent information regulator 1 ...

متن کامل

Study of the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of CDH1, GSTP1 genes in MDA-MB -453 cell line

Promoter methylation is one of the main epigenetic mechanisms that lead to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifi...

متن کامل

Study of the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of CDH1, GSTP1 genes in MDA-MB -453 cell line

Promoter methylation is one of the main epigenetic mechanisms that lead to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifi...

متن کامل

Oxidative stress-mediated thrombospondin-2 upregulation impairs bone marrow-derived angiogenic cell function in diabetes mellitus.

OBJECTIVE Circulating angiogenic cells play an essential role in angiogenesis but are dysfunctional in diabetes mellitus characterized by excessive oxidative stress. We hypothesize that oxidative stress-mediated upregulation of thrombospondin-2 (TSP-2), a potent antiangiogenic protein, contributes to diabetic bone marrow-derived angiogenic cell (BMAC) dysfunction. APPROACH AND RESULTS BMACs w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 113 8  شماره 

صفحات  -

تاریخ انتشار 2013